A Compendium of Chinese-Rings-Like Puzzles

Dr. Goetz Schwandtner

http://puzzles.schwandtner.info/compendium

Dutch Cube Day 33, 20.10.2013

Chinese Rings

Interesting puzzle - but:

A whole compendium for one puzzle?

Agenda

1. Introduction - Chinese Rings
2. Puzzles of Various Kinds in the Compendium
3. Definition "CR recursive"
4. How to solve these puzzles?
5. Number of moves and solution length
6. Recent Developments
7. Compendium entries

Chinese Rings Variants

SpinOut, Crazy Elephant Dance

Crymer de polvil

Maze Puzzles

高 돕들

Puzzle Locks

Tower of Hanoi Variants

Sliding Piece Puzzles / 2D Burrs

Burrs

Puzzle Boxes

Puzzle "Devices"

Disentanglement Puzzles

Definition: CR recursive puzzles

A CR recursive (or n-ary) puzzle is a puzzle that

- contains m special similar pieces (with $m \geq 1$) and
- the puzzle can be generalized to other values of $m \geq 1$ and
- each special piece has n different positions (e.g. $0, \ldots, n-1$, with $n \geq 2$, Arity n) and
- there is a uniform condition stating that a special piece can only move between some positions if the other special pieces are in certain positions.

Example 1: Chinese Rings

Example 1: Chinese Rings

Condition to move a ring, the green ring in the following example:
depending on all rings to the left

Def CR recursive:

- m special pieces
- n different positions
- generalizable
- uniform condition:

Example 2: Crazy Elephant Dance

Def CR recursive:
-m special pieces

- n different positions
- generalizable
- uniform condition
- 5 Elephants
- Positions 0, 1, 2
- (others: See Markus Götz' Homepage)
-Condition: ?

Example 2: Crazy Elephant Dance

Elephant can move between 0 and 1 if:

All right of it are in position 2

Elephant can move Between 1 and 2 if:

Right neighbor is in position 0 All further right are in position 2

How to Solve?

- Move pieces depending on other pieces positions (uniform condition)
- How to implement solution based on this?
- Recursion!

Recursion Example 1: Tower

Recursion Example 2: CR

Number of Moves - Solution Length

- Number of moves for specific puzzle or as function $s(m, n)$ of parameters m, n.
- Typically with growth like n^{m}

Chinese Rings:
$n=2$
$s(m, n)=\left[2^{m+1} / 3\right]$
moves: 21

Kugellager:
$n=5$
$s(m, n)=2^{*} 5^{m}$
moves: 1250

Die Welle:
$n=5$
$s(m, n)=5^{m}-1$
moves: 124

Ternary or Binary?

Not always does arity n from definition and base of solution length function coincide!

Example:
Crazy Elephant Dance is ternary ($n=3$), but has solution length $3 \cdot\left(2^{m}-1\right)-2 \cdot m$

Why?
Not all configurations are used in the solution of the puzzle:

Recent Developments

Kugellager 7

$\mathrm{n}=7$; 4802 moves

Data Contained in Compendium

CR060	Name	Die Welle		
	Designer		Manufacturer	Year
	Jean-Claude Constantin		Jean-Claude Constantin	2010
	Arity	No of pieces Piece type	Solution length function	Number of moves
	5	3 balls	$5^{m}-1$	124
	Remarks			
	References	$[1]$		

CR074	Name	Dispersed	GC Lock		
	Designer			Manufacturer	Year
	Namick Salakhov			Namick Salakhov	2013
\%0.0.0.0	Arity	No of pieces	Piece type	Solution length function	Number of moves
	2	9	Switches		92
	Remarks				
[1] [2] [3] [4]	References [1], [2]				
CR014	Name	Electro 1			
	Designer			Manufacturer	Year
				Tenyo	
	Arity	No of pieces	Piece type	Solution length function	Number of moves
	3	5	pairs of loops		26
	Remarks	The second CR068, CR0	picture shows 069, CR070, CF	an unknown variant. R075	ants: CR030, CR067,
[11 [2]	References	[1]			

Thank you

Compendium of Chinese-Rings-Like Puzzles:

http://puzzles.schwandtner.info/compendium

Dr. Goetz Schwandtner
goetz@schwandtner.info

